Használati útmutató Microchip SR087

Olvassa el alább 📖 a magyar nyelvű használati útmutatót Microchip SR087 (16 oldal) a nincs kategorizálva kategóriában. Ezt az útmutatót 4 ember találta hasznosnak és 2 felhasználó értékelte átlagosan 4.5 csillagra

Oldal 1/16
2017 Microchip Technology Inc. DS20005544A-page 1
SR086/SR087
Features
Efficient Operation without Magnetics
No High-voltage Capacitors
Adjustable Main Output Voltage (9V to 50V)
Additional Internal Linear Regulator:
- 3.3V for SR086
- 5V for SR087
Up to 100 mA Combined Output Current
Single BOM for 120 VAC/230 VAC
Built-in Soft Start
Less than 200 mW Standby Power
Applications
White Goods
Household Appliances
Lighting Controls
Circuit Breakers
Keep-alive Supplies
General Description
The SR086/SR087 are inductorless switching
regulators designed to operate directly from a rectified
AC line. The operating principle is to turn on a pass
transistor when the rectified AC is below the output
voltage and to turn it off when the output voltage
reaches a specific level. The ICs feature an adjustable
main output voltage of 9V to 50V and an additional
fixed output of 3.3V for SR086 and 5V for SR087.
Efficiencies of around 55% may be realized for loads
up to 1W in 120 VAC applications and about 50%
efficiencies for loads up to 800 mW in 230 VAC
applications.
A logic-level enable input allows the SR086/SR087 to
be disabled—useful when they are employed as
keep-alive power supplies.
Package Type
Backside on the SOIC package is at ground potential and may be connected to
ground or left unconnected. See Table 2-1 for pin information.
8-lead SOIC
(with Heat Slug)
(Top view)
1
2
3
4
8
7
6
5
VIN
EN
GND
VREG
GATE
VGD
VOUT
VFB
Heat Slug
WARNING
Galvanic isolation is not provided. Dangerous voltages are present when connected to the AC line. It is
the responsibility of the designer using the SR086/SR087 to ensure that adequate security measures are
in place to protect the end user from electrical shock.
The circuits shown in this data sheet are not guaranteed to meet surge and conducted EMI
requirements. The effectiveness of these circuits may vary with a particular application. The designer
must conduct tests to ascertain compliance with applicable standards and regulations.
Adjustable Offline Inductorless Switching Regulators
SR086/SR087
DS20005544A-page 2 2017 Microchip Technology Inc.
Functional Block Diagram
1.0kV
1.0A
275V
50A
90 to
270VAC
50/60Hz
RGD
1.1
STGD5NB120SZ
VOUT - 1
1.25V
RFB(HI) = RFB(LO)
3.3V
CREG
100nF
GND
VREG
FB
VOUTVGDGATEVIN
EN
1.25A
9.0 - 50VDC
SR086
R
FB(LO)
12.4kΩ
C
GD
100nF
COUT
470μF
RPD
390kΩ COUT1
1.0μF
Upper circuitry
powered by VGD - VOUT
Lower circuitry
powered by VOUT - GND
Level
Translator
1.25V
REG
R
Q
S
13V
s
1.0kV
1.0A
275V
50A
90 to
270VAC
50/60Hz
RGD
1.1MΩ
STGD5NB120SZ
VOUT - 1
1.25V
RFB(HI) = RFB(LO)
5.0V
CREG
100nF
GND
VREG
FB
VOUTVGDGATEVIN
EN
1.25A
9.0 - 50VDC
SR087 RFB(LO)
12.4kΩ
CGD
100nF
COUT
470μF
RPD
390kΩ COUT 1
1.0μF
Upper circuitry
powered by VGD - VOUT
Lower circuitry
powered by VOUT - GND
Level
Translator
1.25V
REG
R
Q
S
13V
2017 Microchip Technology Inc. DS20005544A-page 3
SR086/SR087
Typical Application
1.0kV
1.0A
275V
50A
90 to
270VAC
50/60Hz
390kΩ 1.1MΩ
STGD5NB120SZ
VOUT - 1
1.25V
R1 = R2
3.3V
@60mA
100nF
GND
VREG
FB
VOUTVGDGATE
VIN
EN
Enable
1.25A
VOUT
9.0 - 50VDC
@100mA - IREG
SR086 R2
12.4k
Ω
1.0μF
100nF
470μF
Circuits
1.0kV
1.0A
275V
50A
90 -
270VAC
50/60Hz
390kΩ 1.1MΩ
STGD5NB120SZ
VOUT - 1
1.25V
R1 = R2
5.0V
@60mA
100nF
GND
VREG
FB
VOUTVGDGATE
VIN
EN
Enable
1.25A
VOUT
9.0 - 50VDC
@ 100mA - IREG
SR087
R2
12.4k
Ω
1.0μF
100nF 470μF
SR086/SR087
DS20005544A-page 4 2017 Microchip Technology Inc.
1.0 ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings †
Output Voltage, VOUT ..................................................................................................................................–0.3V to 56V
Feedback Voltage, VFB ..............................................................................................................................–0.3V to 6.5V
Enable Voltage, VEN ...................................................................................................................................–0.3V to 6.5V
Operating Junction Temperature, TJ.................................................................................................... –40°C to +125°C
Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for
extended periods may affect device reliability.
RECOMMENDED OPERATING CONDITIONS
Parameter Sym. Min. Typ. Max. Unit Conditions
Output Voltage V
OUT 9 — V50
Load on V
OUT
, including Feedback Divider and Load on V
REG IOUT 100 µA
Headroom for Internal Linear Regulation (V
OUT–VREG) VHR 4 — — V
ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise noted, T
A = –40°C to +85°C. Voltages referenced to GND pin.
Parameter Sym. Min. Typ. Max. Unit Conditions
Current Consumption at V
GD IGD — — 60 µA
Current Consumption of the Lower Circuitry I
OUT(INT) V400 µA OUT = 9V–50V
Gate Drive Supply Voltage V
GD 11 13 15 V Note 1
Gate Output High Voltage V
GATE(HI) 11 — V15 Note 1
Gate Output Low Voltage V
GATE(LO) — — V0.5 Note 1
Feedback Voltage (Gate Off) V
FB(OFF) 1.18 1.25 1.31 V
Feedback Voltage (Hysteresis) V
FB(HYST) 50 mV
Feedback Input Current I
FB 500 nA
VIN Trip Voltage (Gate On) VTRIP(ON) 0 3 V Note 1
VIN Trip Voltage (Gate Off) VTRIP(OFF) 9 — V15 Note 1
Enable Voltage, On V
EN(ON) 0.2 — V
Enable Voltage, Off V
EN(OFF) V0.75 REG
VIN Gate Turn-on Delay tDIG(ON) 0 1 Cµs GATE = 1 nF
VIN Gate Turn-off Delay tDIG(OFF) C600 ns GATE = 1 nF
Feedback Gate Turn-off Delay t
DFG(OFF) C450 ns GATE = 1 nF, VFB = 1.5V
Regulated Output Voltage SR086 VREG 3.125 V3.3 3.465 ILOAD = 1 mA, VOUT = 9V
SR087 4.750 5 V5.250
VREG Load Regulation Δ
I VREG –50 +50 mV 0 mA < ILOAD < 60 mA,
VOUT = 9V, TAMB = 25°C
Gate VGD Diode Drop VD 1 V I = 20 mA
Note 1: Referenced to VOUT
TEMPERATURE CHARACTERISTICS
Electrical Characteristics: Unless otherwise noted, for all specifications T
A =TJ = +25°C.
Parameter Sym. Max.Min. Typ. Unit Conditions
TEMPERATURE RANGE
Operating Junction Temperature TJ –40 +125 °C
PACKAGE THERMAL RESITANCE
8-lead SOIC (with Heat Slug) θJA — —84 °C/W
2017 Microchip Technology Inc. DS20005544A-page 5
SR086/SR087
SR086/SR087
DS20005544A-page 6 2017 Microchip Technology Inc.
SRO86 and SR087 Timing Diagram
Pass Transistor on
VIN
VOUT
not to scale
VFB(OFF) 1+
RFB(HI)
RFB(LO)
Pass Transistor is turned
on when VIN falls below:
VOUT + VTRIP(ON)
Pass Transistor is on but
not conducting since the
input voltage is lower
than the output voltage
Pass Transistor is on
and conducting
Pass Transistor is
turned off once VOUT
reaches the trip point
2017 Microchip Technology Inc. DS20005544A-page 7
SR086/SR087
2.0 PIN DESCRIPTION
The descriptions of the SR086/SR087 pins are listed
on Table 2-1. Refer to Package Type for the location of
pins.
TABLE 2-1: PIN FUNCTION TABLE
Pin Number SR086
Pin Name
SR087
Pin Name Description
1 VIN VIN Rectified AC input voltage
2 EN EN Active low enable input
3 GND GND ( )Circuit ground Note 1
4 )VREG VREG Regulated output voltage (Note 2
5 FB FB Feedback input
6 VOUT VOUT Output voltage (9V–50V adj.)
7 VGD VGD Gate drive supply (referenced to VOUT)
8 GATE GATE Drives external IGBT pass transistor
Note 1: Circuit ground will be at the AC line potential.
2: Fixed 3.3V for SR086 and fixed 5V for SR087
SR086/SR087
DS20005544A-page 8 2017 Microchip Technology Inc.
3.0 APPLICATION INFORMATION
D
1
1.0kV
1.0A
Z
1
275V
50A
V
IN
90 to 270VAC
50/60Hz
F
1
1.0A
R
6
12.4kΩ
R5
113kΩ
VOUT
12.6VDC
*R
4
510kΩ
*R3
510kΩ
*R1
200kΩ
*R2
200kΩ
* Two resistors used in
series for reasons of
high voltage creepage
and resistor voltage rating.
Enable
R
7
100kΩ
C2
1.0μF
C3
470μF
C1
100nF
C4
100nF
VREG
3.3VDC
Q
1
STGD5NB120SZ
VIN GATE VGD VOUT
FB
VREG
GND
EN
2
3
4
5
6781
SR086
FIGURE 3-1: SR086 Typical Application Circuit.
D1
1.0kV
1.0A
Z1
275V
50A
VIN
90 to 270VAC
50/60Hz
F1
1.0A
R6
12.4kΩ
R5
113kΩ
VOUT
12.6VDC
*R4
510kΩ
*R3
510kΩ
*R1
200kΩ
*R2
200kΩ
* Two resistors used in
series for reasons of
high voltage creepage
and resistor voltage rating.
Enable
R7
100kΩ
C2
1.0μF
C3
470μF
C1
100nF
C4
100nF
VREG
5.0VDC
Q1
STGD5NB120SZ
VIN GATE VGD VOUT
FB
VREG
GND
EN
2
3
4
5
67
8
1
SR087
FIGURE 3-2: SR087 Typical Application Circuit.
3.1 Output Voltage
VOUT may be adjusted in the range of 9V to 50V by
changing feedback resistor R5 based on Equation 3-1.
EQUATION 3-1:
R5R6VOUT 1.25V1 =
Leave R6 at 12.4 k or less as it assures a minimum
100 µA load required for the proper operation of
SR086/SR087. Change R3 and R4 according to
Equation 3-4. Select C2 and C3 with appropriate
voltage ratings. For C3
, use a low-ESR capacitor with
an adequate ripple current rating (800 mARMS). Use
ceramic for C2.
Since VREG is a linear regulator supplied from VOUT,
the maximum current available from VREG is reduced
as V
OUT is increased due to power considerations.
Refer to Equation 3-2 for SR086 and Equation 3-3 for
SR087.
EQUATION 3-2:
IREG M A X 
1.5W
VOUT 3.3V 
------------------------------------
=or 60 mA, whichever is
less
EQUATION 3-3:
IRE G MA X 
1.5W
VOUT 5V 
-------------------------------
=or 60 mA, whichever is
less
3.2 Input Voltage
To reduce standby power for 230 VAC-only
applications or for supply voltages less than 90 Vrms,
R3 and R4 should be changed according to
Equation 3-4. R1+R2 should remain at 400 k or less.
Two resistors in series are used to ensure adequate
creepage distances for 230 VAC operation. For 120
VAC-only applications, single resistors may be used.
2017 Microchip Technology Inc. DS20005544A-page 9
SR086/SR087
EQUATION 3-4: R3 + R4 EQUATION
R3R4
+ 
2VIN2VIN2
Vx1Vx
2VIN
----------------------
 
 
 
cos
 25 A
--------------------------------------------------------------------------------------
Where: Vx = VOUT + 15V
Use the minimum anticipated RMS value for
VIN. Take resistor tolerance into account,
selecting the next lower standard value.
Choosing a lower value has no effect other
than higher standby power.
3.3 Output Ripple
Storage capacitor C3 was sized to provide about 2VP-P
ripple at 100 mA load (IOUT + IREG). For lighter loads,
C3 may be reduced. Conversely, C3 may be increased
for lower ripple. Use a low-ESR capacitor with an
adequate ripple current rating (e.g. 800 mARMS for
100 mA loads). Efficiency and output current capability
may drop with increased capacitance because of a
smaller conduction angle associated with lower ripple.
Due to feedback hysteresis, ripple cannot be reduced
below 4%. See Equation 3-5.
EQUATION 3-5:
VRIPPLE P P IOUT IREG
+ 2fIN
C3
Note: VREG requires at least 4V of headroom.
Therefore, VOUT
, including ripple, must not fall
below 7.3V for SR086 and 9V for SR087.
3.4 Line Transformer
During initial testing, it is tempting to use an isolation
transformer or a variable transformer on the AC line.
However, the high inductance of the transformer
(frequently in mH range) should not be used because it
interferes with the normal operation of the
SR086/SR087. This is not a concern with the normal
inductance of the AC line or for AC line filters.
AC Line SR086
Circuitry
FIGURE 3-3: Line Transformer.
As shown in Figure 3-3, the SR086/SR087 draw
current from the AC line (in short, high current pulses).
The transformer’s high inductance tends to limit the
current pulse. Furthermore, inductive kickback on the
falling edge of the current pulse can create high voltage
spikes which must be absorbed by the transient
protector.
3.5 Electromagnetic Interference
(EMI) Capacitor
Small-value capacitors from circuit common to earth
ground should not be used as they prevent the
SR086/SR087 from operating. See Figure 3-4.
FIGURE 3-4: EMI Capacitor.
3.6 EMI
The SR086/SR087 circuits, as shown in the
Functional Block Diagrams, meet FCC Class B and
CISPR 14-1 (household appliances) requirements for
conducted emissions for combined loads of less than
20 mA (IOUT + IREG).
3.7 Fuse
Although the average current drawn from the AC line is
low, the RMS current is fairly high due to the current
being drawn in short high-current pulses. Since a fuse
is basically a resistor with a power dissipation given by
IRMS2 R, the fuse must be sized for the RMS current
and not the average current. For a 1W load at 120 VAC,
the RMS current is 700 mARMS, while the RMS current
for a 0.5W load at 230 VAC is 360 mARMS.
3.8 Load
Total load on the SR086/SR087 is the total load current
drawn from VOUT (IOUT
), and since the linear regulator
is supplied from VOUT
, it also includes the current
drawn from VREG (IREG). Total load is calculated in
Equation 3-6 Equation and 3-7.
SR086/SR087
DS20005544A-page 10 2017 Microchip Technology Inc.
EQUATION 3-6:
ILOAD IOUT IREG
+=
EQUATION 3-7:
PLOAD VOUT IOUT IREG +=
3.9 Uninterruptible Power Supply
(UPS)
The SR086/SR087 will not operate from a UPS with a
square wave output. This type of output is usually
referred to as “modified sine wave.”
3.10 Transient Protection
The transient protector must be located before the
bridge rectifier. The reason for this is to minimize
capacitance to allow the rectified AC to fall below V
OUT.
Since there is no capacitor to absorb AC line transients,
complete transient protection must be provided by the
TVS or MOV device. Since the recommended IGBT is
rated at 1.2 kV and the SR086/SR087 never see the full
input voltage, the bridge rectifier becomes the limiting
element when selecting an MOV. When using a 1 kV
bridge, an MOV having a clamping voltage of greater
than 1 kV is recommended.
An RC network on the AC line, as shown in Figure 3-5
and Figure 3-6, affords additional protection from line
transients as well as reducing conducted EMI. It does,
however, reduce power supply efficiency.
R2
10.0kΩ
1.0μF
1.0μF
240VAC
X2
1.0kV
1.0A
275V
50A
90 to
270VAC
50/60Hz
200kΩ
STGD5NB120SZ
VOUT - 1
1.25V
R1 = R2
3.3V
@60mA
100nF
GND VREG
FB
VOUT
VGD
GATE
VIN
EN
Enable
1.0A
VOUT
9.0 - 50VDC
@ 100mA - IREG
SR086
100nF
10Ω, 3.0W
Wire Wound
470μF
200kΩ 510kΩ
510kΩ
FIGURE 3-5: SR086 Additional Transient Protection.
R2
10.0kΩ
1.0μF
1.0μF
240VAC
X2
1.0kV
1.0A
275V
50A
90 to
270VAC
50/60Hz
200kΩ
STGD5NB120SZ
VOUT - 1
1.25V
R1 = R2
5.0V
@60mA
100nF
GND VREG
FB
VOUTVGD
GATE
VIN
EN
Enable
1.0A
VOUT
9.0 - 50VDC
@ 100mA - IREG
SR087
100nF
10Ω, 3.0W
Wire Wound
470μF
200kΩ 510kΩ
510kΩ
FIGURE 3-6: SR087 Additional Transient Protection.
2017 Microchip Technology Inc. DS20005544A-page 11
SR086/SR087
4.0 PACKAGING INFORMATION
4.1 Package Marking Information
Legend: XX...X Product Code or Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for product code or customer-specific information. Package may or
not include the corporate logo.
3
e
3
e
8-lead SOIC Example
NNN
XXXXXXX
YYWW
e3
e3
e3
e3e3
615
SR086SG
1725
e3
e3
e3
e3e3
8-lead SOIC Example
NNN
XXXXXXX
YYWW
e3
e3
e3
e3e3
612
SR087SG
1735
e3
e3
e3
e3e3
8-Lead SOIC (Narrow Body w/Heat Slug) Package Outline (SG)
4.90x3.90mm body, 1.70mm height (max), 1.27mm pitch
Symbol A A1 A2 b D D1 E E1 E2 e h L L1 L2 ș ș
Dimension
(mm)
MIN 1.25* 0.00 1.25 0.31 4.80* 3.305.80* 3.80* 2.29
1.27
BSC
0.25 0.40
1.04
REF
0.25
BSC
0O5O
NOM - - - - 4.90 - 6.00 3.90 - - - - -
MAX 1.70 0.15 1.55* 0.51 5.00* 3.816.20* 4.00* 2.790.50 1.27 8O15O
JEDEC Registration MS-012, Variation BA, Issue E, Sept. 2005.
7KLVGLPHQVLRQLVQRWVSHFL¿HGLQWKH-('(&GUDZLQJ
7KLVGLPHQVLRQGLIIHUVIURPWKH-('(&GUDZLQJ
Drawings not to scale.
D
Seating
Plane
Gauge
Plane
L
L1
L2
Top View
Side View View A - A View B
View B
θ1
θ
E1 E
A A2
A1
A
A
Seating
Plane
eb
h
h
8
1
D1
E2
Bottom View
Exposed
Thermal
Pad Zone
Note 1
Note 1
(Index Area
D/2 x E1/2)
8
1
Note:
1. ,IRSWLRQDOFKDPIHUIHDWXUHLVQRWSUHVHQWD3LQLGHQWL¿HUPXVWEHORFDWHGLQWKHLQGH[DUHDLQGLFDWHG7KH3LQLGHQWL¿HUFDQEHDPROGHGPDUN
LGHQWL¿HUDQHPEHGGHGPHWDOPDUNHURUDSULQWHGLQGLFDWRU
Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.
SR086/SR087
DS20005544A-page 12 2017 Microchip Technology Inc.
2017 Microchip Technology Inc. DS20005544A-page 13
SR086/SR087
APPENDIX A: REVISION HISTORY
Revision A (May 2017)
Converted and merged Supertex
Doc #s DSFP-SR086 and DSFP-SR087 to
Microchip DS20005544A
Changed the package marking format
Changed the quantity of the SG package from
3000/Reel to 3300/Reel
Made minor text changes all throughout the
document
SR086/SR087
DS20005544A-page 14 2017 Microchip Technology Inc.
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.
Examples:
a) SR086SG-G: Adjustable Offline Inductorless
Switching Regulator with Addi-
tional 3.3V Internal Regulator,
8-lead SOIC (with Heat Slug),
3300/Reel
b) SR087SG-G: Adjustable Offline Inductorless
Switching Regulator with Addi-
tional 5V Internal Regulator,
8-lead SOIC (with Heat Slug),
3300/Reel
PART NO.
Device
Devices: SR086 = Adjustable Offline Inductorless Switching
Regulator with Additional 3.3V Internal
Regulator
SR087 = Adjustable Offline Inductorless Switching
Regulator with Additional 5V Internal
Regulator
Package: SG = 8-lead SOIC (with Heat Slug)
Environmental: G = Lead (Pb)-free/RoHS-compliant Package
Media Type: (blank) = 3300/Reel for an SG Package
XX
Package
-
X - X
Environmental
Media Type
Options

Termékspecifikációk

Márka: Microchip
Kategória: nincs kategorizálva
Modell: SR087

Szüksége van segítségre?

Ha segítségre van szüksége Microchip SR087, tegyen fel kérdést alább, és más felhasználók válaszolnak Önnek




Útmutatók nincs kategorizálva Microchip

Útmutatók nincs kategorizálva

Legújabb útmutatók nincs kategorizálva